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Cascade electrocyclic reactions based on cyclobutene ring expan-
sion have been used for the synthesis of a variety of carbocyclic
systems.1 Transformations of cyclobutenones to the six-membered
carbocycles typically involve 6π-electrocyclic ring closure
(6π-ERC) of reactive intermediates of type1, which incorporate
an sp carbon at the terminus of the 6π system to facilitate the ring
closure reaction.2 As a consequence, these reactions produce
products containing all sp2-hybridized ring carbons, such as phenols
and quinones. Reactions of cyclobutenones leading to the syntheti-
cally more versatile cyclohexenones by 6π-ERC of the parent 3-oxy
hexatrienes (2) have not been reported.3

In this Communication we describe a cascade reaction sequence
that leads to highly functionalized cyclohexenones starting from
reaction of cyclobutenones withR-lithio-R,â-unsaturated sulfones
and amides. The hexatriene-cyclohexadiene cyclization steps pre-
sumed to be involved in these transformations are among the most
facile hexatriene electrocyclizations reported thus far.

We imagined that reaction of enone3 with vinyl anion 4 con-
taining an electron-withdrawing group at the anionic carbon, fol-
lowed by a charge-accelerated four-electron conrotatory ring open-
ing of the cyclobutene, would generate a hexatriene intermediate7
(Scheme 1).4 The 6π-ERC of 7 was expected to be exceptionally
facile because bond reorganization leads to the more stable enolate
8. This cyclization can also be formally considered as an intramo-
lecular Michael addition of an extended enolate to an electron-
deficient alkene. We reasoned thatR-lithiatedR,â-unsaturated sul-
fones would be convenient nucleophiles for the proposed reaction.
These compounds can be generated by the reaction of readily avail-
ableR,â-unsaturated sulfones with alkyllithiums or lithium amides.5

Initial experiments demonstrated that treatment of sulfone9 with
n-BuLi at -78 °C, followed by addition of cyclobutenone11 and
warming the reaction mixture to room temperature, produced the
desired cyclohexenone12 in 81% yield (eq 1). The structure of12

with the two substituents at the adjacent stereocenters trans and
pseudoaxial was unequivocally established by X-ray crystal-
lographic analysis. Notably, reaction of11with â-(E)-lithiostyrene
stopped after the cyclobutene ring opening,6 indicating thatthe pres-
ence of an electron-withdrawing sulfonyl group in10was essential
for the 6π-ERC to occur. The mild conditions for the formation of
12 are noteworthy, because 6π-ERC of hexatrienes typically
requires thermal activation.7 The observed reactivity is comparable
to that of methylenepropenylidenecyclohexadienes, which undergo
fast thermal 6π-electrocyclic reactions proceeding at room tem-
perature.8

We believed that quenching the reaction between10 and11 at
low temperature (-78 °C) would allow for the isolation of reaction
intermediates. Indeed, this reaction produced alcohol13 (61%) and
a ring-opened compound14 (23%), the conjugated acids of the
two intermediates postulated in the reaction. Treatment of13 with
LDA (1.2 equiv,-78 °C to room temperature) cleanly furnished
cyclohexenone12 in 94% isolated yield.9 As expected, the reaction
of 10 with 4-methyl-3-phenylcyclobutenone produced the ring-
opened compound15as a single isomer at the double bond, indicat-
ing that the cyclobutene ring opening was conrotatory with an out-
ward rotation of the oxide group.10

Having established proof of principle for the proposed cascade,
we next investigated the scope of the process (Table 1). Nucleo-
philes containing aromatic, heteroaromatic, andtert-alkyl substit-
uents were well tolerated (entries 1-4). Entry 4 illustrates the
potential of this reaction for the formation of cyclohexenones with
quaternary carbon centers.

Interestingly, the sulfones containing allylic hydrogen atoms in
a trans relationship to the sulfonyl group displayed a different mode
of reactivity. Thus, the addition of16 to 11did not produce a cyclo-
hexenone but instead gave rise to the formation of an open-chain
enone18 in 85% yield (eq 2). Apparently, this compound results

Scheme 1. Proposed Transformation of Cyclobutenones into
Cyclohexenones
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from the competitive [1,7]-sigmatropic hydrogen shift in intermedi-
ate 17. While the driving force for the [1,7]-H shift is also the
formation of a stable enolate of aâ-ketosulfone, this process effect-
ively contends with 6π-electrocyclization. This is in line with the
general observation that [1,7]-H shifts are faster than 6π-ERC when
both of these processes are operative.8

Sigmatropic rearrangement can be circumvented by employing
a cyclopropyl-substituted sulfone (entry 5), which undergoes clean
electrocyclic reaction despite the presence of an allylic hydrogen.
In this particular case, the [1,7]-H shift is disfavored as it leads to
a highly strained methylene cyclopropane. The sigmatropic rear-
rangement is geometrically impossible forZ-sulfones, and both
cyclic and acyclicZ-sulfones afford cyclohexenones through 6π-
ERC (entries 6 and 7).11 Not unexpectedly, reaction of dienyl sul-
fone19 with 11 proceeded via an 8π-ERC to produce21 (eq 3),12

which exists in the enol form both in the solid state and in solution.

The overall conversion outlined in Scheme 1 is not limited to
nucleophiles containing the sulfonyl activating group.Αmides are

also good candidates for this reaction (eq 4). Thus, reaction of11
with 23, generated from bromide22by bromine/lithium exchange,
furnished the hydroisoquinoline derivative24 in 52% isolated yield.

In summary, we demonstrated nucleophilic addition/4π-ring
opening/6π-ring closing cascade reactions between cyclobutenones
andR-lithio-R,â-unsaturated sulfones and amides leading to func-
tionalized cyclohexenones. Strategic incorporation of electron-
withdrawing groups at the C-2 of the 3-oxido hexatrienes signifi-
cantly lowers the activation energy of the 6π-eletrocyclizations,
which proceed under mild conditions.
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Table 1. Synthesis of Cyclohexenones from Cyclobutenonesa

a Conditions: THF,-78 °C to room temperature, 1-3 h. b Reaction
mixture was heated at 65°C for 1 h. c In equilibrium with 10-15% of the
cis isomer.
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